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6. Institució Catalana de la Recerca i Estudis Avancats (ICREA), 08010 Barcelona, Spain
7. Department of Psychiatry, University of Oxford, Oxford, OX3 7JX United Kingdom

8. Turing Institute, London, NW1 2DB United Kingdom
*nartallokalu@maths.ox.ac.uk, †goriely@maths.ox.ac.uk

(Dated: May 2, 2024)

Information processing in the human brain can be modelled as a complex dynamical system operating
out of equilibrium with multiple regions interacting nonlinearly. Yet, despite extensive study of non-
equilibrium at the global level of the brain, quantifying the irreversibility of interactions among brain
regions at multiple levels remains an unresolved challenge. Here, we present the Directed Multiplex
Visibility Graph Irreversibility framework, a method for analysing neural recordings using network analysis
of timeseries. Our approach constructs directed multi-layer graphs from multivariate time-series where
information about irreversibility can be decoded from the marginal degree distributions across the layers,
which each represents a variable. This framework is able to quantify the irreversibility of every interaction
in the complex system. Applying the method to magnetoencephalography recordings during a long-
term memory recognition task, we quantify the multivariate irreversibility of interactions between brain
regions and identify the combinations of regions which showed higher levels of non-equilibrium in their
interactions. For individual regions, we find higher irreversibility in cognitive versus sensorial brain regions
whilst for pairs, strong relationships are uncovered between cognitive and sensorial pairs in the same
hemisphere. For triplets and quadruplets, the most non-equilibrium interactions are between cognitive-
sensorial pairs alongside medial regions. Finally, for quintuplets, our analysis finds higher irreversibility
when the prefrontal cortex is included in the interaction. Combining these results, we show that multilevel
irreversibility offers unique insights into the higher-order organisation of neural dynamics and presents a
new perspective on the analysis of brain network dynamics.

I. INTRODUCTION

The human brain produces complex spatiotemporal neural
dynamics across multiple time and length scales. Abstract-
ing the brain as a large-scale network of discrete interacting
regions has proved fruitful in the analysis and modelling
of neural dynamics [1]. Moreover, this abstraction lends
neuroscientists the language and tools of statistical physics
in the hope of uncovering the central mechanisms driving
brain function and their links to observed neural dynamics
[2, 3]. For instance, recent data captured by functional
imaging showed large scale violations of detailed balance
in human brain dynamics, suggesting that the brain is
operating far from equilibrium [4]. This fundamental
observation has prompted the development of a range
of techniques to provide a measure for the degree of
non-equilibrium in neuroimaging time-series recorded in

different conditions [5–10]. These measures have shown
that the degree of non-equilibrium is elevated during
cognitive tasks [4–7] whilst reduced in both impairments
of consciousness [11], sleep [10] and Alzheimer’s disease
[12] indicating that non-equilibrium may be a key signature
of healthy consciousness and cognition in the brain [13].
Despite this, current methods are restricted to aggregate
measures of non-equilibrium. We present a novel approach
to non-equilibrium brain dynamics that is able to measure
the irreversibility of individual, higher-order interactions
to gain valuable insight into the organisation of regional
interactions in neural dynamics.

The second law of thermodynamics asserts that, in
the absence of entropy sinks, the average entropy of a
system increases as time flows forwards [14, 15]. More
specifically, a system at a steady-state dissipating heat to
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FIG. 1. The DiMViGI workflow. (a) A 2-layer directed multiplex visibility graph from a random time-series. (b) In- and out- degree
distributions for each tuple at each level i.e. (x1), (x2) and (x1, x2). (c) Jensen-Shannon divergence of in- and out- degree distributions
at each level.

its environment causes an increase in entropy [16, 17].
This results in the system breaking the detailed balance
condition and an asymmetry in the probability of transi-
tioning between system states [18]. This, in turn, yields
macroscopically irreversible trajectories from reversible
microscopic forces inducing, what Eddington denoted,
‘the arrow of time’ (AoT) [19]. Results in modern non-
equilibrium thermodynamics have shown that the entropy
production rate of a system that is out of equilibrium is
equal to the information-theoretic evidence for the AoT
quantified by the divergence

σ =
∑
Γ

P (Γ) log
P (Γ)

P (Γ′)
, (1)

where Γ is a trajectory, Γ′ is its time-reversal and P (Γ) is
the ‘path-probability’, the probability of observing that spe-
cific trajectory [20, 21]. This divergence provides a distance
from equilibrium [22–24]. Two complimentary interpreta-
tions of the AoT in the brain have been given. First, the
hierarchical organisation of positions in state-space, that
results from asymmetrical transition probabilities, has been
linked to the dynamic hierarchical organisation of brain re-
gions [7, 25, 26]. Second, the AoT has been interpreted
as inducing a ‘causal flow’ in the system where some re-
gions emerge as information ‘sources’ and others as ‘sinks’
with these relationships identifiable from irreversibility anal-
ysis [7, 8]. These studies for quantifying non-equilibrium in
the brain approximate the global evidence for the AoT in
time-series using techniques such as estimating transitions
between coarse-grained states [4], with time-shifted corre-
lations [5], machine learning [6] or with model-based ap-
proaches [7–10]. However, the AoT and the corresponding
production of entropy is a macroscopic property of the sys-
tem, emerging from interactions between the microscopic
variables at multiple scales. Recent theoretical research has

shown that the AoT can be decomposed into unique con-
tributions arising at each scale within the system [23, 27].
Motivated by this decomposition, we present the Directed
Multiplex Visibility Graph Irreversibility (DiMViGI) frame-
work, as shown in Fig. 1, for analysing the irreversibility of
multivariate signals at multiple levels using network analysis
of time-series, in particular the visibility graph [28, 29]. Us-
ing the DiMViGI framework, we investigate the irreversibility
of human brain signals, captured by magnetoencephalogra-
phy (MEG), during a long-term recognition task of musi-
cal sequences that utilised long-term memory [30–35]. Our
analysis covers all possible levels in the system and is able
to capture the higher-order organisation of brain regional in-
teractions yielding interpretable and novel insights into the
neural dynamics underpinning long-term memory.

II. DECOMPOSING THE ARROW OF TIME IN
MULTIVARIATE SYSTEMS

We first motivate our framework by decomposing the in-
formation theoretic evidence for the AoT into contributions
from different levels. Consider a multivariate system of N
interacting units assumed to be in a thermodynamic steady-
state. Then, we define the global rate of entropy produc-
tion, σ, for the system. Depending on whether the system
is discrete or continuous and Markovian or non-Markovian,
the path probability, and hence the entropy production rate,
has a different formulation (see SI for explicit formulation).
Following [23], we decompose the global rate of entropy
production as

σ =

N∑
k=1

σ(k). (2)
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where σ(1) is produced by the units evolving individually
and σ(k) is the contribution of interactions between tuples
of size k . We further decompose σ(k) into the sum of unique
contributions to the entropy production rate σ(x1,...,xk ) pro-
duced by the interactions between the particular k-tuple of
variables (x1, ..., xk):

σ(k) =
∑

(x1,...,xk )∈Λk

σ(x1,...,xk ), (3)

where Λk denotes the set of all tuples of variables of size k .
Hence, we have

σ =

N∑
k=1

∑
(x1,...,xk )∈Λk

σ(x1,...,xk ). (4)

Motivated by this decomposition, we note that individual in-
teractions can have differential contributions to the overall
irreversibility of the system. Our framework aims to com-
pute the irreversibility of individual k-tuples of variables in
a multivariate time-series in order to compare interactions
at each level, defined by k . We identify tuples of variables
whose multivariate trajectory is highly irreversible indicating
a strongly non-equilibrium interaction between the variables
in this tuple. We note that the decompositions in equa-
tions (2-3) are only well-defined for multi-partite dynamics,
meaning only one variable changes in a single time-step,
an assumption that does not hold in continuous data [27].
However, we do not directly measure the unique contribu-
tion σ(x1,...,xk ) to the global entropy production rate, but
instead approximate the irreversibility of a given tuple,

ς(x1,...,xk ) =
∑

Γ(x1 ,...,xk )

P (Γ(x1,...,xk )) log
P (Γ(x1,...,xk ))

P (Γ′(x1,...,xk ))
, (5)

where Γ(x1,...,xk ) is the projection of a trajectory into the
portion of state-space defined by the variables (x1, ..., xk)
(see SI for details).

III. MEASURING IRREVERSIBILITY WITH THE
MULTIPLEX VISIBILITY GRAPH

We build on the growing paradigm of network analysis of
time-series that has gained traction in the analysis of neural
signals [36]. These methods are characterised by mapping
a time-series into a corresponding network. For instance,
the visibility algorithm maps a univariate time-series into a
so-called ‘visibility graph’ (VG) [28]. Explicitly, given a time-
series {Xi}i∈I with time indices {ti}i∈I , where Xi ∈ R and I
is the index set, the VG has one node for each i ∈ I. Nodes
i , j ∈ I are connected by an edge if the corresponding data-
points (ti , Xi) and (tj , Xj) are ‘mutually visible’ i.e. that
they satisfy that, for any intermediate data-point (tk , Xk)

with ti < tk < tj ,

Xk < Xj + (Xi −Xj)
tj − tk
tj − ti

. (6)

In geometric terms, this condition is met if (ti , Xi) is visible
from (tj , Xj). That is, the line connecting (ti , Xi) and
(tj , Xj) does not cross any intermediate data-points as
shown in Panel b) of Fig. 2. Trivially, each node is con-
nected to its neighbours whilst large positive fluctuations
become hubs with many connections due to their greater
visibility. This construction can be naturally extended
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FIG. 2. An example of a visibility and directed visibility graph
on a random time-series. (a) A random equi-spaced time-series.
(b) The red lines connected data points that mutually visible.
(c) The visibility graph associated with the random series. (d)
A time-series showing visibility directed forward in time. (e) The
directed visibility graph corresponding to the above series.

to multivariate time-series by considering the ‘multiplex
visibility graph’ (MVG) [37]. Given a multivariate time-
series with N variables, the MVG is a multi-layer graph, a
so-called ‘multiplex’, with N independent layers with the
same node base. Applying the visibility algorithm to each
variable in turn yields a series of VGs which each define
one layer of the MVG.

We can further generalise the VG to measure irreversibility
in univariate time-series by extending the undirected VG to
a time-directed counterpart (DVG) [29, 38]. To do so, we
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FIG. 3. The experimental paradigm for collection and processing of MEG data. (a) The brain activity in 51 participants was collected
using magnetoencephalography (MEG) while they performed a long-term auditory recognition task. Participants memorised a 5 tone
musical sequence. They were then played 5 further sequences of tones that were either the original sequence or a modified version.
They then were requested to state whether the sequence belonged to the original music or was a varied version of the original sequences.
In this analysis we only consider the experimental condition where participants were played the original memorised sequence. (b) The
MEG data was co-registered with the individual anatomical MRI data, and source reconstructed using a beamforming algorithm. This
procedure returned one time-series for each of the 3559 reconstructed brain sources. Six main functional brain regions (ROIs) were
derived. The neural activity for each ROI was extracted yielding a multivariate time-series. For further details on the experimental
set-up see Materials and Methods and SI. For a comparison between experimental conditions see Bonetti et al [30].

simply direct the edges ‘forward in time’. For example, an
edge connecting time-points ti < tj is now directed i → j
(see Panels d-e) of Fig. 2) and decompose the degree d of
a node into the sum of the in-going and out-going degree,

d = din + dout. (7)

A univariate stationary process, X(t), is time-reversible
if the trajectory {X(t1), ..., X(tT )} is as probable as
{X(tT ), ..., X(t1)} [39]. Therefore, in the case of a
reversible process, the in- and out-going degree distribu-
tions of the associated DVG should converge [29, 38]. It
follows that the level of irreversibility can be captured by
measuring the divergence between the in- and out-going
degree distributions. We extend this method to the case
of multivariate time-series. We direct the edges of the
MVG such that they go forward in time yielding a directed
MVG (DMVG). Since this is a multiplex graph, we can
calculate the multivariate joint, over all layers, in- and
out-going degree distributions, and all associated marginals.

Explicitly, we consider a multivariate time-series with
N variables and T time points, given by {X(t1), ...,X(tT )},
where X(ti) = (x1(ti), ..., xN(ti)) ∈ RN and build its
associated DMVG. For a given k-tuple of variables,
(n1, ..., nk), we calculate the multivariate marginal in-going
and out-going degree distributions:

P
(n1,...,nk )
in (d1, ..., dk), P

(n1,...,nk )
out (d1, ..., dk), (8)

where P (n1,...,nk )(d1, ..., dk) is the probability of a node
having degree di in layer ni for all i simultaneously. We
then compute the divergence between these particular in-
and out-going marginal distributions using Jensen-Shannon
divergence (JSD) (see Materials and Methods). Due to
the multidimensional distributions, we are quantifying
irreversibility in the multivariate state-space. Repeating

this for all possible k-tuples in the system, we quantify
the relative irreversibility that is being produced by each
interaction at a given level. We can repeat this process for
all values of k , thus measuring irreversibility at all levels.

In summary, the DiMViGI framework, shown in Fig.
1, begins with a multivariate time-series of neural activity.
The series is mapped into the associated DMVG using
the visibility algorithm. We calculate the joint in and
out-degree distributions and all the possible marginal
in- and out- degree distributions. We measure the JSD
between the pairs of in- and out-marginals for each
tuple in the system to quantify the irreversibility of that
interaction. At each level k , we can then compare the
relative irreversibility of each k-order interaction to identify
the dominant irreversible interactions.

IV. ANALYSIS OF MEG DURING LONG-TERM
RECOGNITION

We consider MEG recordings from 51 participants with
15 trials per participant source-localised into six regions
of interest (ROIs) collected according to the experimental
paradigm presented in Fig. 3, described in Materials and
Methods, SI and in Ref. [30]. The ROIs include the
auditory cortices in the left and right hemispheres (ACL,
ACR); the hippocampal and inferior temporal cortices in
the the left and right hemispheres (HITL, HITR) and two
medial regions, the bilateral medial cingulate gyrus (MC)
and the bilateral ventro-medial prefrontal cortex (VMPFC).
Panel a) of Fig. 4 shows a schematic representation
of the regions. The participants performed an auditory
recognition task during the MEG recordings (Panel a), Fig
3). First, they memorised a short musical piece. Next,
they were presented musical sequences and were requested
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FIG. 4. DiMViGI analysis of 6-ROI MEG recordings during a long-term memory task. The number of (*)/(†) represents the number of
standard deviations above/below the mean for a particular tuple at that level. (a) Schematic diagram showing the organisation of the
ROIs in the MEG recordings. The ROIs are ACL/R: auditory cortex left/right; MC: medial cingulate gyrus; VMPFC: ventro-medial
prefrontal cortex; HITL/R: hippocampal inferior temporal cortex left/right. Cognitive regions are in red and sensory regions in blue.
(b) 1-order irreversibility at cohort-level. At this level, we consider irreversibility of each signal in isolation. The hippocampal regions
are the most irreversible whilst the sensory regions are the most reversible. (c) 2-order irreversibility at cohort-level. The pairs that
show the most irreversibility are those that include a sensory and hippocampal pair in the same hemisphere (ACL/R, HITL/R). The
most reversible pair is (ACL, ACR) which is made up of two sensory regions. (d) 3-order irreversibility at cohort-level. The triplets
that are most irreversible are those that include an intra-hemispheric sensory and hippocampal pair as well as the prefrontal cortex
(ACL/R, HITL/R, VMPFC). The most reversible contains both hippocampal regions and the medial cingulate gyrus, (HITL, HITR,
MC). (e) 4-order irreversibility at cohort-level. The quadruplets that are most irreversible are those that include a hippocampal
and sensory pair and both medial regions (ACL/R, HITL/R, MC, VMPFC) and those that include both hippocampal regions, a
sensory region and the VMPFC. The most reversible is the quadruplet that contains no medial regions. (f) 5-order irreversibility at
cohort-level. The most reversible quintuplets are those that omit a medial region, in particular the quintuplet that omits the VMPFC.

to state whether the sequence belonged to the original
music or was a varied version of the original sequences.
Since differences between experimental conditions have
been described in detail by Bonetti et al [30] and are
beyond the scope of this work, here, we consider only one
experimental condition, where participants recognised the
original, previously memorised sequences.

For each participant and trial, we construct the DMVG.
Next we estimate every marginal in- and out- degree
distribution using each DMVG as a sample and calculate
the JSD. We denote the JSD between k-dimensional degree
distributions as the k-order irreversibility. Alternatively,
for each participant in isolation, the degree distributions
can be calculated using only their associated trials to
get an estimate of the k−order irreversibility for each
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participant and each tuple (see SI). However, due to the
higher number of samples, the cohort-level analysis is
more robust and hence is our focus in this report. The
results of the DiMViGI analysis are presented in Figure
4. We note that the darker colours represent tuples with
greater irreversibility whilst the lighter colours reflect more
reversible interactions. The icon along the x-axis indicates
which tuple is being considered, with reference to the
schematic in Panel a) of Fig. 4, with the included regions
coloured in black. Furthermore, we highlight statistically
significant tuples at each level. The number of (∗)/(†)
indicates the number of standard deviations above/below
the k−level mean.

We begin our analysis at 1-order. Whilst individual
(microscopic) variables are often reversible in a non-
equilibrium complex system, the ROIs considered here
reflect a very coarse parcellation of the brain. At this level,
we are considering each ROI, which is composed of many
truly microscopic variables, in isolation and note that each
one shows significant irreversibility. It is clear from Panel b)
of Fig. 4, that the ROIs have a clear disparity in their levels
of irreversibility. The sensory ROIs are more reversible
than the medial and hippocampal ROIs. Furthermore,
there is a skew towards the right hemisphere being more
irreversible than the left. This result emerges consistently
across all levels. Next, we consider the irreversibility of
pairwise interactions (k = 2). Panel c) of Fig. 4 shows the
2-order irreversibility for all pairs. We are able to identify
strongly irreversible pairs such as the intra-hemispheric
pairs (ACL, HITL) and (ACR, HITR). On the other hand,
cross-hemispheric pairs, e.g. (ACL, ACR), are the most
reversible, indicating a lack of interaction between them.
The strong hemispheric symmetry in the results validates
the findings, as it is an expected and intuitive observation.
Panel d) of Fig. 4 shows the irreversibility for each triplet
interaction in the system. The highly irreversible triplets
are those that include a hemispheric pair alongside a
medial region, with those containing the VMPFC, a region
known to drive brain dynamics during task [40], being
particularly irreversible. Panel e) of Fig. 4 shows that the
most irreversible quadruplet interactions are composed of
a hemispheric pair alongside both medial regions as well
as those that contain (VMPFC, HITL, HITR) alongside a
sensory region. Conversely, the quadruplet containing no
medial regions, is the most reversible, and therefore has
the least interaction. This is particularly interesting as this
quadruplet is made up of the two most irreversible pairs yet
they do not appear to interact as a foursome. Therefore,
this framework is truly capturing higher-order interactions
that cannot simply be decomposed into a sum of indepen-
dent interactions of lower order. Finally, Panel f) of Fig. 4
shows that quintuplets that contain both medial ROIs are

the most irreversible. Furthermore, the quintuplet that does
not contain the VMPFC has the most reversible interaction.

We can interpret this result in the context of predic-
tive coding and its links to sensory tasks [41–43]. The
participants are exposed to a memorised tonal sequence
that does not deviate from their expectation of what they
were about to hear. Under the theory of predictive coding,
this would result in an adjustment of a participant’s prior
expectations, facilitated by asymmetric, hierarchical inter-
actions between brain regions at multiple levels, in order to
reinforce the prior expectations in light of the new sensory
information [44]. This in turn would lead to a cascade
of non-equilibrium, asymmetric interactions between key
ensembles of regions whose function is optimised for the
process of auditory recognition [7]. With the DiMViGI
framework, we are able to identify these ensembles in
empirical data and reach conclusions about the interactions
between ROIs during long-term recognition.

V. DISCUSSION

In this study, we describe a novel framework for measuring
the emergence of non-equilibrium dynamics, through multi-
variate irreversibility, at multiple system levels. We are able
to capture the irreversibility of each possible interaction in
a multivariate time-series of signals. Applying the DiMViGI
framework to neural recordings obtained during a long-term
memory recognition task, we investigate the higher-order
organisation, and the associated non-equilibrium interac-
tions, of brain regions and how they break time-reversal
symmetry during an auditory recognition task. The results
clearly show a broad distribution of irreversibility at each
system level; hence we are able identify which interactions
are driving the global entropy production rate. Further-
more, we link irreversibility to hierarchical predictive coding
and theorise that non-equilibrium interactions could emerge
as a consequence of the modulation of prior expectations
in light of new sensory information [44]. According to
the theory of predictive coding, this might be realised
through hierarchically asymmetric interactions that, in
turn, induce the emergence of irreversibility at multiple
system levels [7, 45, 46]. Whilst a recent analysis of
these neural recordings with standard methods was able
to identify a hierarchy of information processing in the
brain during long-term recognition [30], the introduction of
the DiMViGI framework appears crucial to uncovering the
higher-order and non-equilibrium nature of the interactions.
Such insights are opaque to traditional analyses but emerge
from the unique lens of non-equilibrium statistical physics.

The implications of the framework and the associated
results are multi-fold. Firstly, we go beyond aggregate
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[4–7, 9, 10] or univariate [29, 38] measures of irre-
versibility, expanding the exisiting quiver of techniques
for studying non-equilibrium in the brain to include a
multilevel approach. Our technique is able to capture
multilevel contributions to irreversibility in continuous
time-series, so far only considered for binary variables [27],
that is nonspecific and can be applied to multivariate
time-series from any domain to identify particular highly
non-equilibrium interactions. Secondly, we build on the
sustained interest in identifying higher-order organisation
in neural recordings and other multivariate time-series
[47–51], particularly in information theoretic decomposi-
tions of brain data that reveal how higher-order functional
interactions shape neural dynamics [52–54]. Notably,
many higher-order frameworks are either computationally,
or by formulation, restricted to studying either triplet
[48, 49, 51, 52] or system-wide interactions [47], whilst our
results extend easily to all possible levels in the system.
Our framework attempts to bridge the broader discussion
on higher-order mechanisms and behaviours in complex
systems [55–57] with non-equilibrium thermodynamics [58]
through the quantification and interpretation of multilevel
irreversibility. Finally, our work further solidifies the visi-
bility algorithm, and network analysis of time-series, as an
empirically useful tool in the analysis of neural data [36, 59].

Despite these promising results, we note some nu-
anced limitations in our framework. Whilst the visibility
algorithm and the degree distribution approach reduces the
dimension of the data, we are still computing an entropy
between high-dimensional distributions which is compu-
tationally restrictive. This can be circumvented limiting
the support of the degree-distribution to exponentially
improve computational efficiency whilst minimally affecting
numerical accuracy (see SI). Nevertheless, analysing all
possible interactions yields a combinatorial explosion, hence
we opt for a coarse, low-dimensional, parcellation of the
brain that allows us to analyse the system at all possible
levels. However, the highlighting of individual tuples is
most meaningful when there is a strong intuition about the
nature of the interaction, which can be only be expected
in low-dimensional parcellations where ROIs are clear,
functionally segregated brain areas. Finally, we note that
our measure is undirected within the tuple, meaning we
cannot identify the direction of information flow as one
can with classical measures of causality [60, 61] or some
approaches to the AoT [7, 8]. However, we note that
the AoT represents directed flow between states and not
variables, meaning it is not a direct measure of causality,
but instead capturing a distinct, but related, phenomena in
interacting dynamics.

A key advantage of the DiMViGI framework is the

ability to scale between levels with a consistent approach.
Strictly local measures such as auto- and cross-correlations
are limited to individual and pairwise interactions [62, 63].
On the other hand, simply applying global measures
to each subset of variables in the time-series, such as
coarse-graining or using a model-based measure, yields
an inconsistent approach where different tuples cannot be
compared. Our framework extends consistently to all levels
thus yielding directly comparable quantities.

VI. CONCLUSIONS

In this work, we have introduced the Directed Multiplex
Visibility Graph Irreversibility framework for measuring the
irreversibility of multivariate interactions at all levels within
a system. We applied this method to neural recordings
during a long-term auditory recognition task to study the
relative irreversibility of different interactions between brain
regions. Doing so, we were able to demonstrate the hier-
archical higher-order organisation of brain dynamics during
tasks. This analysis suggests that reinforcement of prior ex-
pectations during an auditory recognition task is facilitated
through a hierarchy of irreversible higher-order interactions
in the brain, an observation that we link to the mechanisms
of predictive coding. Furthermore, we highlighted the par-
ticular combinations of cognitive and sensorial regions that
are preferentially recruited during audition and long-term
recognition. This framework is nonspecific and provides a
general tool for investigating higher-order interactions and
non-equilibrium dynamics in multivariate time-series emerg-
ing from other complex systems.

VII. MATERIALS AND METHODS

A. Estimating degree distributions from finite samples

For each sample, a multivariate time-series, we construct
the DMVG, defined by the multiplex adjacency matrix, A,

A
[l ]
i j =

{
1 if i → j in layer l
0 else

. (9)

Then we calculate the in- and out-degree of each node in
each layer

d̃
[l ],in
i =

∑
j

A
[l ]
j i , (10)

d̃
[l ],out
i =

∑
j

A
[l ]
i j , (11)

where d [l ],ini , d
[l ],out
i are the in-and out-degree of node i in

layer l respectively.
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For a k−tuple (n1, ..., nk), we calculate
P
(n1,...,nk )
in (d1, ..., dk) by counting the number of nodes i ,

across all samples, where

d̃
[l ],in
i = dl , (12)

for each l ∈ {1, ..., k} simultaneously and for
dl ∈ {1, ..., dmax} where dmax is the maximum degree
of a node in the network, and then dividing through by the
total number of nodes in all samples. We calculate the
same for P (n1,...,nk )out (d1, ..., dk).

As we are using a finite number of samples, we then
perform Laplace smoothing to eliminate singularities of the
form P (x) = 0 < Q(x) for which divergence is ill-defined.
Instead of using,

P (n1,...,nk )(d1, ..., dk) =
N

M
, (13)

where N is the number of nodes satisfying condition 12 and
M is the total number of nodes across samples, we perform
the following replacement,

P (n1,...,nk )(d1, ..., dk) =
N + 1

M + dkmax

. (14)

Such an approach is equivalent to assuming a uniform
Bayesian prior for the degree distributions [64].

B. Computing Jensen-Shannon divergence

We quantify the divergence between the in- and out-degree
distributions using Jensen-Shannon divergence (JSD) which
is a symmetrised version of Kullback-Leibler divergence
(KLD) that does not suppose a model-data relationship [65].
This is defined between two probability distributions P,Q as

J(P |Q) =
1

2
D(P |M) +

1

2
D(Q|M), (15)

where M = 1
2(P +Q) is an averaged distribution and D(·)

represents the KLD, given by,

D(P |Q) =
∑
x∈X
P (x) log

P (x)

Q(x)
. (16)

As X represents the support of the distribution, it takes
the form {1, ..., dmax}k where k is the dimension of the
probability distributions and dmax is the maximum degree of
a node in the multiplex. For computational feasibility, dmax

can be limited during the calculation of JSD, truncating
the sum. For 5-order analysis, we limit dmax to 75. For a
systematic analysis of the effect of degree limiting see SI.

C. Magnetoencephalography (MEG) data

1. Participants

The participant cohort consisted of 83 healthy volunteers
[33 males and 50 females] with ages in the range 19 to 63
(mean age 28.76 ± 8.06). Participants were recruited in
Denmark, came from Western countries, reported normal
hearing and gave informed consent before the experiment.
The project was approved by the Institutional Review Board
(IRB) of Aarhus University (case number: DNC-IRB-2020-
006) and experimental procedures complied with the Decla-
ration of Helsinki – Ethical Principles for Medical Research.
After pre-processing, the 51 participants with at least 15
non-discarded trials in the first experimental condition were
included in the analysis. For those participants with more
than 15 trials, 15 trials were randomly sampled.

2. Experimental stimuli and design

We employed an old/new paradigm auditory recognition
task [30, 32, 33, 35]. Participants listened to a short musi-
cal piece twice and asked to memorise it to the best of their
ability. The piece was the first four bars of the right-hand
part of Johann Sebastian Bach’s Prelude No. 2 in C Mi-
nor, BWV 847. Next, participants listened to 135 five-tone
musical sequences, corresponding to 27 trials in 5 experi-
mental conditions, of 1750 ms each and were requested to
indicate if the sequence belonged to the original music or
was a variation. Differences between experimental condi-
tions have been described in detail by Bonetti et al [30].
We consider one experimental condition, where participants
recognised the original, previously memorised sequences.

3. Data acquisition

MEG recordings were taken in a magnetically shielded room
at Aarhus University Hospital, Aarhus, Denmark using an
Elekta Neuromag TRIUX MEG scanner with 306 channels
(Elekta Neuromag, Helsinki, Finland). The sampling rate
was 1000 Hz with analogue filtering of 0.1-330 Hz. For
further details on the data acquisition see SI.

4. MEG pre-processing

First, raw MEG sensor data was processed by MaxFilter [66]
to attenuate external interferences. We then applied signal
space separation (for parameters see SI). Then the data was
converted into Statistical Parametric Mapping (SPM) for-
mat, preprocessed and analyzed in MATLAB (MathWorks,
Natick, MA, USA) using in-house codes and the Oxford
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Centre for Human Brain Activity (OHBA) Software Library
(OSL) [67]. The continuous MEG data was visually in-
spected and large artefacts were removed using OSL. Less
than 0.1% of the collected data was removed. Next, in-
dependent component analysis (ICA) was implemented to
discard artefacts in the brain data from heart-beats and
eye-blinks (for details see SI) [68]. Lastly, the signal was
epoched in 135 trials, 27 trials for each of 5 experimen-
tal conditions and the mean signal recorded in the baseline
(the post-stimulus brain signal) was removed. Each result-
ing trial lasted 4400 ms plus 100 ms of baseline time.

5. Source reconstruction

We employed the beamforming method to spatially localise
the MEG signal [69]. For details on the beamforming algo-
rithm and the implementation see SI.

D. Code and data availability

The code used to implement the DiMViGI framework will
be made available at https://github.com/rnartallo/
multilevelirreversibility following peer-review and
publication.
The in-house code used for MEG pre-processing is available
at https://github.com/leonardob92/LBPD-1.0.
The multimodal neuroimaging data analysed here is avail-
able upon reasonable request.
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ableiten lassen, Annalen der Physik 79, 368–397 (1850).

[16] C. Jarzynski, Nonequilibrium equality for free energy differ-
ences, Physical Review Letters 78 (1997).

[17] G. E. Crooks, Entropy production fluctuation theorem and
the nonequilibrium work relation for free energy differences,
Physical Review E 60 (1999).

[18] R. K. P. Zia and B. Schmittmann, Probability currents as
principal characteristics in the statistical mechanics of non-
equilibrium steady states, Journal of Statistical Mechanics:
Theory and Experiment (2007).

[19] A. S. Eddington, The Nature of the Physical World (Cam-
bridge University Press, 1928).

[20] U. Seifert, Entropy production along a stochastic trajectory
and an integral fluctuation theorem, Physical Review Letters
95 (2005).

[21] R. Kawai, J. M. R. Parrondo, and C. V. den Broeck, Dissipa-
tion: The phase-space perspective, Physical Review Letters
98 (2007).

[22] E. H. Feng and G. E. Crooks, Length of time’s arrow, Phys-
ical Review Letters 101 (2008).

[23] C. W. Lynn, C. M. Holmes, W. Bialek, and D. J. Schwab,
Decomposing the local arrow of time in interacting systems,
Physical Review Letters 129 (2022).

[24] A. Seif, M. Hafezi, and C. Jarzynski, Machine learning
the thermodynamic arrow of time, Nature Physics 17, 105
(2021).

[25] M. L. Kringelbach, Y. Sanz-Perl, E. Tagliazucchi, and
G. Deco, Toward naturalistic neuroscience: Mechanisms un-
derlying the flattening of brain hierarchy in movie-watching
compared to rest and task, Science Advances 9 (2023).

[26] G. Deco, D. Vidaurre, and M. L. Kringelbach, Revisiting
the global workspace orchestrating the hierarchical organi-
zation of the human brain, Nature Human Behaviour 5, 497
(2021).

[27] C. W. Lynn, C. M. Holmes, W. Bialek, and D. J. Schwab,
Emergence of local irreversibility in complex interacting sys-
tems, Physical Review E 106 (2022).

[28] L. Lacasa, B. Luque, F. Ballesteros, J. Luque, and J. C.
Nuño, From time series to complex networks: The visibility
graph, Proceedings of the National Academy of Sciences of
the United States of America 105, 4972 (2008).
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1 Introduction

In this supporting information, we provide additional results and analysis not included in the main
manuscript. This supporting information is organised as follows. In Section 2, we show the results of
the directed multiplex visibility graph irreversibility (DiMViGI) framework applied to data from individual
participants to produce distributions of participant spread for the irreversibility of each tuple, rather
than the cohort-level analysis presented in the main manuscript. We assess the significance of the
differences between tuples using pairwise t−tests and one-way ANOVAs. Moreover, we calculate the
correlations between the cohort and participant level analysis. In Section 3, we further validate the
significance of the results obtained at the participant level by shuffling the time-series to produce
surrogate data. We show that shuffling restores detailed balance indicating that the results obtained

1

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2024. ; https://doi.org/10.1101/2024.05.02.592195doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.02.592195
http://creativecommons.org/licenses/by/4.0/


are strictly due to the specific trajectories present in the time-series. Next, in Section 4, we show
that the DiMViGI framework factorises for independent variables, theoretically validating the argument
that it captures ‘true’ higher-order interactions. Using the factorisation, in Section 5, we are able
to define the unique irreversibility generated by a higher order interaction by removing the lower-level
interactions. We compare this to the ‘combined’ results presented in the manuscript. In Section 6,
we validate that our method captures a correlate of the entropy production rate by using simulated
data from four specific examples of the multivariate Ornstein-Uhlenbeck process. In Section 7, we
investigate the effect on the results of limiting the maximum degree in the support of the distributions,
an approach that improves computational efficiency whilst only minimally reducing accuracy. In Section
8, we discuss the definitions of entropy production rate for Markovian and non-Markovian dynamics.
Finally in Section 9 we present a comprehensive description of the experimental paradigm and the
techniques used to record and pre-process the magnetoencephalography (MEG) data.

2 The DiMViGI framework applied to participant-level data

In this section we show the results of applying the DiMViGI framework to data at the participant-level
and obtain distributions for the irreversibility of each tuple. As mentioned in the main manuscript,
we analysed MEG recordings from 51 participants with 15 trials per participant. In the cohort-level
analysis presented in the main manuscript, we constructed the in- and out-degree distributions using
51× 15 = 765 samples of the multiplex network. In order to examine the spread between participants,
we repeat the same analysis for each participant in isolation, using only the 15 associated trials. As a
result the degree distributions are much more poorly estimated and produce much higher divergences.
Nevertheless, we are able to quantify the irreversibility of each tuple of brain regions for each participant
and examine the distribution.

Figure 1 shows the results of the DiMViGI analysis for the participant-level data distributions of the
irreversibility for each tuple in each level. Panel a) shows the schematic representation of the 6 re-
gions of interest (ROIs) that correspond to variables in the multivariate time-series. The icons on
the x-axis of the subsequent panels indicate which ROIs are included in each tuple. Panels b-f) show
the participant-level distributions for 1-5 order respectively. We run one-way ANOVAs and find that,
at each level 1-5, the tuple is a significant predictor of irreversibility (p < 0.00001). In addition, we
run paired t−tests to see which tuples at each level are significantly different in a pairwise compari-
son. Figures 2-6 display the participant-level distributions with the significance results of the pairwise
t−tests displayed. Due to the explosion in possible pairs of tuples, for levels 2-5 we restrict to pairwise
comparisons between tuples that contain at least one ROI in common (note: due to the clear hierarchy
at level 1, we compare adjacent ROIs only for clarity). The significance of each comparison is denoted
as follows: (ns) if p > 0.05; (*) if p < 0.05; (**) if p < 0.01; (***) if p < 0.001 and (****) if
p < 0.0001. Figure 2 shows that at level 1, the difference between each tuple in pairwise comparison
is significant (p < 0.0001). Figures 3-6 show that at levels 2-5, there is a mixture of significant and
not significant differences depending on the number of ROIs in common between the compared tuples.

Finally, we compare the participant-level analysis to the cohort-level analysis by calculating the ranking
of tuples at each level for each participant and comparing it to the cohort-level ranking, using Spear-
man’s ρ. In addition, for each participant at each level, we calculate Pearson’s r (correlation coefficient)
between the participant level and the cohort level. Panel a) of Fig 7 shows the ρ for each participant
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Figure 1: Participant distribution of irreversibility for each tuple. a) Schematic representation of the
6 brain regions of interest (ROIs) in the MEG recordings. The icon in the following panels indicates
which regions are included in each tuple. b) 1-order irreversibility distribution for each ROI in isolation.
The results follow the same hierarchy as the cohort-level analysis in the main manuscript. c) 2-order
irreversibility distribution for each pairs of ROIs. d) 3-order irreversibility distribution for each triplet
of ROIs. e) 4-order irreversibility distribution for each quadruplet of ROIs. f) 5-order irreversibility
distribution for each quintuplet of ROIs. 3
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Figure 2: 1-irreversibility of the participant-level data with the results of paired t−tests between adjacent
ROIs displayed. Each pairwise comparison is significant. (****) implies significance at level p < 0.0001.

at each level when compared to the cohort-level ranking. Panel b) of Fig 7 shows the r for each
participant at each level when compared to the cohort-level measurements. Both show that at lower
orders (1-3), the measurements, and rankings, obtained from the participants in isolation agree closely
with the cohort-level results. However, at higher order (4-5), the low number of samples, 15, in the
participant-level analysis is not enough to accurately estimate the high-dimensional degree distributions
leading to a lack of agreement between the well-estimated cohort analysis and the poorly-estimated
participant analysis.

3 Validation of results against surrogate data from shuffling time-
series

In order to validate that the irreversibilities calculated from the MEG data are significant quantities
reflecting the temporal structure of the neural dynamics, we must compare them to surrogate data.
When generating surrogate data, we aim to break the temporal correlations and restore detailed bal-
ance. In order to do this, we randomly shuffled the time-series in time. This means that the number
of occurrences of each state remains the same as the original data, but the sequence of states is now
randomised thereby restoring detailed balance, as shown by Lynn et al [24].

Other common approaches for generating surrogate time-series such as phase randomisation or Fourier
transform surrogates preserve the temporal structure of the time-series and are therefore unsuitable for
this application [22, 30].

Figure 8 shows the comparison of the measurements in the original MEG time-series and its ran-
domly shuffled surrogate. For each tuplet the difference between the shuffled and original time-series
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Figure 3: 2-irreversibility of the participant-level data with the results of paired t−tests between all
pairs of pairs of ROIs that contain at least one ROI in common displayed. The significance of each
comparison is denoted as follows: (ns) if p > 0.05; (*) if p < 0.05; (**) if p < 0.01; (***) if p < 0.001
and (****) if p < 0.0001. There is a range of not significant and significant comparisons between
pairs of ROIs.
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Figure 4: 3-irreversibility of the participant-level data with the results of paired t−tests between all
pairs of triplet of ROIs that contain at least one ROI in common displayed. The significance of each
comparison is denoted as follows: (ns) if p > 0.05; (*) if p < 0.05; (**) if p < 0.01; (***) if p < 0.001
and (****) if p < 0.0001. There is a range of not significant and significant comparisons between
triplets of ROIs.
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Figure 5: 4-irreversibility of the participant-level data with the results of paired t−tests between all
pairs of quadruplets of ROIs that contain at least one ROI in common displayed. The significance of
each comparison is denoted as follows: (ns) if p > 0.05; (*) if p < 0.05; (**) if p < 0.01; (***) if
p < 0.001 and (****) if p < 0.0001. There is a range of not significant and significant comparisons
between quadruplets of ROIs. 7
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Figure 6: 5-irreversibility of the participant-level data with the results of paired t−tests between all
pairs of quintuplets of ROIs that contain at least one ROI in common displayed. The significance of
each comparison is denoted as follows: (ns) if p > 0.05; (*) if p < 0.05; (**) if p < 0.01; (***) if
p < 0.001 and (****) if p < 0.0001. There is a range of not significant and significant comparisons
between quintuplets of ROIs.
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Figure 7: Correlations between participant and cohort level results. a) Spearman’s ρ coefficient for the
ranking of tuples at each level for each participant when compared to the ranking obtained from the
cohort-level analysis. b) Pearson’s r correlation coefficient for the measurements of tuples at each level
for each participant when compared to the measurements obtained from the cohort-level analysis. The
figure shows that at lower orders, the participant distributions agree more closely with the cohort-level
analysis. However, at higher orders, the degree distributions are more poorly estimated leading to low
agreement between the cohort and participant-level analysis.
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is significant (p < 0.0001). This shows that the irreversibility measured using the DiMViGI framework
is a significant statistical feature of the multivariate time-series as the shuffled data is measured to be
far more reversible using the DiMViGI framework.

4 The DiMViGI framework factorises for independent variables

To illustrate that the DiMViGI framework indeed can differentiate higher order interactions from the
composition of lower order ones, we consider the framework applied to a k-tuple of variables, (x1, ...xk).
First we assume that x1 is independent of (x2, ..., xk) and show that we can write the irreversibility of
the k−tuple as the sum of the irreversibility of x1 plus the irreversibility of the (k−1)−tuple (x2, ..., xk).
Inductively, we can show that the DiMViGI framework factorises for independent variables meaning that
the irreversibility of their interaction is merely the sum of the irreversibility of each variable in isolation.
This validates that the framework is truly capturing multilevel irreversibility.

Consider (x1, ..., xk) such that x1 is independent of the other variables. As x1 is independent, the
edges in the associated layer of the multiplex network are also independent. As a result, the joint (in-
and out-) degree distribution of the multiplex factorises as follows,

P (d1, ..., dk) = P (d1)P (d2, ..., dk). (1)

Under the DiMViGI framework, we quantify the irreversibility of the triplet as

ς(x1,...,xk ) = JSD(Pin(d1, ..., dk), Pout(d1, ..., dk)), (2)

=
∑
d1,...,dk

Pin(d1, ..., dk) log
Pin(d1, ..., dk)

P ∗(d1, ..., dk)
+

∑
d1,...,dk

Pout(d1, ..., dk) log
Pout(d1, ..., dk)

P ∗(d1, ..., dk)
, (3)

where P ∗ := 1
2(Pin + Pout). We focus first on the term concerning the in-degree distribution and use

the independence of x1 and the properties of logarithms to factorise and simplify this expression,∑
d1,...,dk

Pin(d1, ..., dk) log
Pin(d1, ..., dk)

P ∗(d1, ..., dk)

=
∑
d1,...,dk

Pin(d1)Pin(d2, ..., dk) log
Pin(d1)Pin(d2, ..., dk)

P ∗(d1)P ∗(d2, ..., dk)
(4)

=
∑
d1,...,dk

Pin(d1)Pin(d2, ..., dk)

(
log
Pin(d2, ..., dk)

P ∗(d2, ..., dk)
+ log

Pin(d1)

P ∗(d1)

)
(5)

=
∑
d2,...,dk

Pin(d2, ..., dk) log
Pin(d2, ..., dk)

P ∗(d2, ..., dk)
+

∑
d1

Pin(d1) log
Pin(d1)

P ∗(d1)
. (6)

By symmetry the same is true for the term concerning the out-degree distribution. Substituting in the
simplified expression, we get

ς(x1,...,xk ) = JSD(Pin(d2, ..., dk), Pout(d2, ..., dk)) + JSD(Pin(d1), Pout(d1)), (7)

= ς(x2,...,xk ) + ς(x1). (8)

This indicates that in this k-dimensional system that does not contain a genuine k-order interaction, the
irreversibility of the k−tuple simply decomposes into the sum of non-independent tuples. By induction,
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Figure 8: Comparison of original neural recording against surrogate data obtained via shuffling the
time-series in time. The difference between the original and shuffled data for each tuple at each level is
significant. We label (****) if p < 0.0001. a) 1-order irreversibility is significant (p < 0.0001) for each
ROI when compared to shuffled data. b) 2-order irreversibility is significant (p < 0.0001) for each pair
of ROIs when compared to shuffled data. c) 3-order irreversibility is significant (p < 0.0001) for each
triplet of ROIs when compared to shuffled data. d) 4-order irreversibility is significant (p < 0.0001)
for each quadruplet of ROIs when compared to shuffled data. e) 5-order irreversibility is significant
(p < 0.0001) for each quintuplet of ROIs when compared to shuffled data. f) Schematic representation
of the 6 brain regions of interest (ROIs) in the MEG recordings. The icon in the preceding panels
indicates which regions are included in each tuple.
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for a k−tuple where all variables are independent, the irreversibility fully decomposes into the sum of
the 1-order irreversibilities,

ς(x1,...,xk ) =

k∑
i=1

ς(xi ). (9)

5 Unique contributions from higher order interactions

In our analysis, we have considered the irreversibility of multilevel interactions. However, for a given
k−order interaction, we have measured the irreversibility of the combined k−tuple. This is in contrast
with the ‘unique’ irreversibility that is contributed purely by the k-body interaction, discounting the
j−body interactions for j < k that are included within this k−tuple.

Within the theory of higher order interactions, this distinction represents the difference between a
hyper-graphical structure and a simplicial complex [1]. In the former, a k-body interaction does not
comprise of lower-order components, whereas in the latter, every lower order relationship must exist to
define a higher order one i.e. a 3−order triangle relationship requires all the edges of the triangle to be
included.

Within the lens of irreversibility, we note that the decomposition proposed by Lynn et al [25, 26] specif-
ically considers the unique contributions to the global irreversibility. Alternatively, in the manuscript,
we present a method that captures the irreversibility of path projected into the portion of state-space
defined by a tuple,

ς(x1,...,xk ) =
∑

Γ(x1 ,...,xk )

P (Γ(x1,...,xk )) log
P (Γ(x1,...,xk ))

P (Γ′(x1,...,xk ))
, (10)

which is not equivalent to the unique contribution. In this section, we relate our framework more closely,
but still not equivalently, to the decomposition in Ref. [25] by measuring the unique contribution of the
k-body interaction to ς(x1,...,xk ). We do this by recursively subtracting the irreversibility of sub-tuples
Ω ⊂ {x1, ..., xk}, from the quantity ς(x1,...,xk ). In such a way we define the unique contribution to the
ς(x1,...,xk ) of the k−body interaction (x1, ..., xk) as,

η(x1,...,xk ) = ς(x1,...,xk ) −
∑

Ω⊂{x1,...,xk}

ηΩ, (11)

which is calculable by noting that η(xi ) = ς(xi ). We are able to show that, using this framework, the
results are highly correlated, indicating that higher order interactions dominate the irreversibility in
these large-scale neural recordings. This stands in contrast with results obtained in spike-train data
that indicate that, at the neuronal level, pairwise interactions dominate [25, 26].

We note that this approach captures the unique contributions of k-body interactions by considering
the following

ς(xi ) = η(xi ) ∀i ∈ {1, ..., N}, (12)
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i.e. the combined and unique irreversibility at 1-order is equivalent. Next we note that for two inde-
pendent variables, the irreversibility factorises, under the DiMViGI framework,

ς(xi ,xj ) = η(xi ) + η(xj ). (13)

For independent variables xi , xj , we expect η(xi ,xj ) = 0. Therefore, it is natural to define,

η(xi ,xj ) = ς(xi ,xj ) − η(xi ) − η(xj ), (14)

which is positive for correlated variables and vanishes for independent variables. By definition, it captures
the irreversibility of the pairwise interaction, discounting the singleton dynamics. In this fashion, we
can recursively calculate the unique contributions at k-order using the unique contributions at j-order
for 1 ≤ j < k . Concretely, we have,

η(x1,...,xk ) = ς(x1,...,xk ) −
∑

Ω⊂{x1,...,xk}

ηΩ. (15)

Figure 9 shows the contrast between the unique and combined irreversibilities for tuples at levels k =
2, 3, 4 at the cohort-level. We do not consider 1-order as the unique and combined values are equivalent.
Furthermore, we cannot consider k = 5 as we employ degree-limiting (see Section 7) for computational
efficiency at this level. As a result, we consciously underestimate the irreversibility at 5-order which
leads to negative values when inputting these measurements into equation 15. Panel a) of Fig 9 shows
a small level of contrast between the unique and combined pairwise dynamics. This indicates that the
irreversibility of pairwise interactions dominates the irreversibility of singleton dynamics. Furthermore
the general hierarchy is preserved. Panels b-c) show similar results with increasing levels of contrast.
However, this increasing contrast is due to the combinatorics of higher order interactions. In particular,
as we increase the level k , we are subtracting more terms when isolating the unique contribution.
However, this difference is overstated, as panel d) shows that the correlation between unique and
combined measurements is almost perfect. This indicates that at a given level k , the k-body interaction
dominates the lower level interactions and contributes the most to the irreversibility. This result is both
a consequence of the method, and the spatially-coarse, low-dimensional data under consideration. It
further suggests that, whilst the DiMViGI framework can be used to compare irreversibility between
levels, it is most useful for comparing tuples within a given level.

6 Validation using simulated data from the multivariate Ornstein-
Uhlenbeck process

Next, we aim to validate our technique against simulated time-series. We choose the multivariate
Ornstein-Uhlenbeck as this is one of the few models that has a known rate of entropy production [14].
Furthermore, this model has been fit to neural recordings in the past in order to estimate the entropy
production rate [13].

6.1 Multivariate Ornstein-Uhlenbeck process

The Orstein-Uhlenbeck process models the velocity of a particle in Brownian motion [36]. In its
generalised multivariate form, we consider N particles with coupled stochastic dynamics given by the
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a)

b)

c)

d)

Figure 9: Comparison of the combined k-order contributions to irreversibility against the unique con-
tributions from each k-tuple for k = 2, 3, 4. a) k = 2. As the irreversibility of the pairwise interactions
is much larger than the individual trajectories, the unique and combined irreversibilities are very similar.
b) k = 3. Whilst there is some contrast between the unique and combined irreversibilities, the general
hierarchy is preserved. c) k = 4. Again there is some contrast between the unique and combined
irreversibilities with the general hierarchy being preserved. d) We show the almost perfect correlation
between the unique and combined irreversibilities at each level. This indicates that the k−order inter-
actions dominate the irreversibility at level k and suggest little difference when considering unique or
combined irreversibilities.
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equation,

dX(t) = −BX(t) dt + η(t), (16)

where X(t) ∈ RN . The friction −B ∈ RN×N is a stable matrix, meaning that every eigenvalue has
strictly negative real part. The additive noise, η(t), is Gaussian and has covariance D ∈ RN×N ,

〈η(t)η>(t ′)〉 = 2Dδ(t − t ′). (17)

D is a symmetric, positive definite matrix, and so we can calculate L, its Cholesky decomposition,
where L satisfies D = LL> and L is lower triangular [14]. As a result, we can write the system as a
Langevin equation,

dX(t) = −BX(t) dt +L dW (t), (18)

where W (t) represents a N-dimensional Wiener process with independent components. The individual
trajectories of a mOU are always reversible, yet at the macroscopic level, irreversibility can emerge.
The macroscopic process is known to be reversible if BD is symmetric i.e.,

BD =DB>. (19)

Note that D is always symmetric, whereas, in general, B is not. Furthermore, the covariance, S, of
the stationary state can be defined implicitly in terms of B and D by the Lyapunov equation,

BS + SB> = 2D. (20)

In the case that the process is reversible, we can use the criterion (19) to write S explicitly,

S = B−1D. (21)

In the case that the process is irreversible, obtaining an explicit form for S is not as simple. Instead,
we parameterise the level of asymmetry using the Onsager matrix of kinetic coefficients and a matrix
Q, that represents the asymmetry,

L = BS =D +Q, (22)

L> = SB> =D −Q. (23)

As shown in [14], the entropy production rate for the multivariate Ornstein-Uhlenbeck process can be
written in terms of the matrices B,D and Q. The rate of entropy production is given by,

Φ = (B>D−1B) = −(D−1BQ). (24)

Clearly, when the process is reversible, Q = 0 and thus Φ = 0. In general, the matrices S and Q
cannot be determined in closed form and so Φ does not have a closed form expression. However, in
the case N = 2 or in the presence of appropriate symmetries in the matrices B and D, a closed form
expression can be derived for Φ [14].
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6.1.1 The case N = 2

In the case N = 2, the Lyapunov equation (20) has a closed form solution, and therefore the entropy
production rate can be explicitly expressed as a function of the entries of B and D [14].

Consider the matrices,

B =

(
a b

c d

)
; D =

(
u w

w v

)
. (25)

In this case, the rate of entropy production is given explicitly by the formula,

Φ =
(cu − bv + (d − a)w)2

(a + d)(uv − w2) . (26)

Clearly we have Φ = 0 if and only if the reversibility criterion,

cu − bv + (d − a)w = 0, (27)

is satisfied [14].

6.1.2 Cyclic symmetry

Consider the situation where the variables live on a ring with N sites where the dynamics are invariant
to translations of the ring. This results in the matrices B and D being circulant, i.e.

B =


b0 b1 . . . bN−1
bN−1 b0 . . . bN−2

...
... . . .

...
b1 b2 . . . b0

 ; D =


d0 d1 . . . dN−1
dN−1 d0 . . . dN−2

...
... . . .

...
d1 d2 . . . d0

 . (28)

As D is assumed to be symmetric, this imposes the additional restriction that dN−i = di . In this case,
the rate of entropy production has a closed form expression,

Φ =

N−1∑
k=0

(=(b̃k))2

<(b̃k)
, (29)

where (b̃0, ..., b̃N−1) is the discrete Fourier transform of the vector (b0, ..., bN−1), =(·) represents the
imaginary part of a number and <(·) represents the real part [14]. Recall that for a circulant matrix,
the Fourier modes of (b0, ..., bN−1) coincide with the eigenvectors of B.

6.2 Example processes validating the DiMViGI framework

Using the cases where we can calculate the explicit rate of entropy production, such as those detailed
above, we can construct example processes and compare the measurements from our technique to the
global rate of irreversibility. Figure 10 shows the results of these numerical experiments.
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6.2.1 Example 1

We first consider Example 1, a 2-dimensional process with friction and noise given by,

B =

(
4 1

2 1

)
; D =

(
1 + 2

2x+1 1

1 1 + 2
2x+1

)
. (30)

This gives rate of entropy production,

Φ =
4x2

5(2x + 2)
, (31)

which vanishes for x = 0, corresponding to a reversible process. Furthermore, as x increases from 0,
the rate of entropy production grows linearly with x .

We numerically sample paths from this process for values x = 0, 0.5, 1, ..., 10 using an Euler-Maruyama
scheme. We sample paths of length T = 500 with a time-step of ∆t = 0.01 and keep only the last
2000 time-steps of the process, to avoid boundary effects.

As shown in Panel a) Fig. 10, we can see that the first order irreversibility captured by the DiMViGI
techniques shows no correlation with the global rate of entropy production. This is because individual
trajectories of the mOU are reversible. As a result, what is plotted is numerical error associated with
finite trajectories which has no correlation with the parameters or Φ. On the other hand, the second
order irreversibility of the pair (x1, x2) is capturing the global rate of entropy production as this interac-
tion produces all the entropy in the system. As a result we can see the strong linear correlation between
the 2-order irreversibility and Φ.

6.2.2 Example 2

We consider Example 2, a circulant 3-dimensional process with a strong triplet interaction,

B =

 1 a −a
−a 1 a

a −a 1

 ; D =

2 1 1

1 2 1

1 1 2

 . (32)

This gives rate of entropy production,

Φ = 6a2. (33)

For a = 0.5, 1, ..., 8.5, we sample paths with the same methods as before and estimate the irreversibility
of the interactions in the system.

As shown in Panel b) of Fig. 10, the individual trajectories are again uncorrelated with the global
rate as they are reversible. Both the pair and triplet dynamics are strongly correlated with the global
rate of entropy production. Whilst we do not know how much each pair contributes to Φ, the circular
symmetry of the process suggests the dynamics of pairs should be identical, which we see here.
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6.2.3 Example 3

We consider Example 3, a circular 3-dimensional process with only pairwise drift interactions, given by,

B =

1 0 a

a 1 0

0 a 1

 ; D =

2 1 1

1 2 1

1 1 2

 (34)

which, again, gives rate of entropy production,

Φ = 6a2. (35)

Paths are sampled for value a = 0.1, 0.2, ..., 1.8. Whilst each component is only coupled to itself and
one other component directly in the drift matrix, it is coupled to the entire system via the noise matrix
and indirectly via the dynamics of the other components. For example, even though x2 does not appear
in the drift term for x1, they are correlated through shared noise and via x3. For this reason, the
difference between Example 2 and Example 3 is not extreme. As can be seen in Panel c) of Fig. 10,
we get almost identical dynamics of the measure. Whilst, we aim to distinguish between Example 2
and Example 3, by restricting to pairwise or triplet dynamics, we note that the mOU is a linear system
that can be decomposed into its pairwise interactions, meaning it cannot produce genuine higher order
effects [1]. However, we are restricted in this analysis to this model as the explicit entropy production
rate is known.

6.2.4 Example 4

We consider Example 4 which is 4-dimensional and non-circulant. As a result, we no longer have the
exact solution for the entropy production rate and must estimate this quantity numerically. Example 4
has drift and covariance,

B =


a2 a 0 0

a a2 0 0

0 0 a2 a

0 0 a a2

 ; D =


2 1 1 1

1 2 1 1

1 1 2 1

1 1 1 2

 . (36)

This system is interacting as a 4-dimensional system as it is coupled through the noise dynamics.
However, in the drift term we have two subsystems where (x1, x2) interact strongly as do (x3, x4), but
these pairs are drift-wise disjoint. In order to numerically estimate the entropy production rate, we
estimate the covariance matrix from the sampled paths,

S = 〈X,X>〉. (37)

Next, we can calculate the asymmetric part of the Onsager matrix,

Q =
1

2

(
BS − SB>

)
, (38)

which can be used to calculate the entropy production rate,

Φ = −(D−1BQ). (39)

We sample paths for values a = 2.5, 2.7, ..., 4.9, but we do not know how Φ scales with a. Panel d)
of Fig. 10 is harder to interpret than for the previous examples, as the numerical approach produces
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greater variance in the plot. However, we plot least-square regression lines for each tuple. At 1-order,
the lines are almost flat, as expected as there should be no correlation between the reversible individual
trajectories and the underlying rate of entropy production. At 2-order, we have the most important
result, which is that whilst the reversibility of all pairs scales with entropy production, the strongly
interacting pairs (x1, x2) and (x3, x4), the upper two lines, are more irreversible. At 3-order, all the
interactions produce almost identical amounts of irreversibility, which is to be expected as each triplet
contains a strongly interacting pair and one component from the other pair, leading to a symmetry
in the dynamics. Finally, the irreversibly of the quadruplet, the entire system, scales linearly with the
underlying entropy production rate.

We note that the mOU is not a truly higher-order system as it is linear and the interactions can
be seen as pairwise, but we are restricted to this model as it has a known rate of entropy production
and producing continuous dynamics. Other techniques have validated their techniques on chaotic pro-
cesses [7] or symbolic dynamics i.e. Ising model [24]. However, deterministic chaos and thermodynamic
irreversibility are not equivalent. Furthermore, these processes do not allow one to scale the number of
variables, nor the level of irreversibility, arbitrarily. On the other hand, by varying the thermodynamic
temperature, one can vary the irreversibility of the Ising model, but the visibility graph is designed to
capture correlations in continuous rather than binary series yielding this model unsuitable. For this
reason, we opt exclusively for the mOU as studied here.

7 Varying the maximum degree in the support of the degree dis-
tributions

The DiMViGI framework projects the high-dimensional, continuous state-space of the multivariate
time-series into a discrete and low-dimensional representation using the visibility graph, thus reducing
the computational cost of calculating information-theoretic quantities [21, 37]. However, the com-
binatorial complexity of considering every possible tuple in a system can be restrictive. Furthermore,
estimating high-dimensional degree distributions can also be computationally demanding in terms of
computer memory. A simple method for improving the memory efficiency of the DiMViGI framework
is to cap the maximum degree in the support of the degree distribution. The degree distribution of the
visibility graph typically decays exponentially as the degree increases [21, 20, 19]. As a result, when
limiting the degree, we are removing minimal information. Moreover, a k-dimensional distribution with
maximum degree dmax contains dkmax entries. Therefore, degree-limiting has an exponential reduction in
the memory usage of the DiMViGI implementation. In our analysis presented in the main manuscript,
we employed degree limiting in the case of k = 5, where we enforced dmax = 75. In this section, we
present a systematic analysis of the effect of degree limiting for each tuple at each level. We implement
this limiting by enforcing that if a node has a degree greater than d̃max, we set its degree to d̃max in
the distribution.

First, we note that, in practice, the restriction causes us to underestimate the irreversibility of the
tuple. However, this is not mathematically guaranteed. For a tuple, (x1, ..., xk), we denote the irre-
versibility with full support to be ς(x1,...,xk ) and the irreversibility with limited support to be ς̃(x1,...,xk ).
Therefore, the difference is,

∆ = ς(x1,...,xk ) − ς̃(x1,...,xk ). (40)
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a)

b)

c)

d)

Figure 10: Validation of the DiMViGI framework using simulated data from the mOU. a) Example 1 -
a 2-dimensional process. The pairwise irreversibility scales with the global rate Φ, whilst the individual
variables do not. b) Example 2 - a 3 dimensional process with drift-disjoint pairs. The pairs and triplet
irreversibilities scale with the global rate Φ whilst the individual trajectories do not. c) Example 3 - a 3
dimensional process with 3 way interactions in the drift and noise. The pairs and triplet irreversibilities
scale with the global rate Φ whilst the individual trajectories do not. d) Example 4 - a 4 dimensional
process with 2 strongly interacting pairs. The global rate Φ is estimated numerically producing variance
in the plot so we plot least-square regressions. The pairs and triplets and quadruplet irreversibilities
scale with the global rate Φ whilst the individual trajectories do not. Notably, the strongly interacting
pairs (x1, x2) and (x3, x4) have a higher level of irreversibilities than the other pairs.
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The sign of ∆ reflects whether we are over or underestimating the irreversibility using the limited
support. We recall the definition of JSD between distributions P and Q,

J(P |Q) =
1

2
D(P |M) +

1

2
D(Q|M), (41)

where M = 1
2(P +Q) is an averaged distribution and D(·) represents the KLD, given by,

D(P |Q) =
∑
x∈X
P (x) log

P (x)

Q(x)
. (42)

Therefore,

∆ =

1
2

dmax∑
d1=d̃max+1,...,dk=d̃max+1

Pin log
Pin

P ∗
+ Pout log

Pout

P ∗

 (43)

+
1

2

 ∑
di=d̃max for some i

Pin log
Pin

P ∗
+ Pout log

Pout

P ∗
− P̃in log

P̃in

P̃ ∗
− P̃out log

P̃out

P̃ ∗

 , (44)

where Pin, Pout are the in- and out-degree distributions with the full support; P̃in, P̃out are the in- and
out-degree distributions with the limited support and P ∗, P̃ ∗ are the averaged in-out distributions. In
other words, the limited and full degree distributions overlap for all degrees d < d̃max and therefore
cancel when we take the difference. By truncating the distribution we are neglecting a number of
positive terms from the full support. However, we must also consider that these edges have not been
simply deleted, but are now included in overestimating the probability that a node has degree d̃max,
hence P and P̃ differ when a node has degree d̃max in some layer. We can rewrite ∆ as,

∆ = A−
1

2

 ∑
di=d̃max for some i

P̃in log
P̃in

P̃ ∗
+ P̃out log

P̃out

P̃ ∗
− Pin log

Pin

P ∗
− Pout log

Pout

P ∗

 , (45)

where A ≥ 0. Therefore, if the subtracted sum is less than A, we will underestimate the irreversibility,
but if it greater than A we will overestimate the irreversibility. As shown in Figure 11, in practice, we
consistently underestimate the irreversibility by limiting the degree, indicating that A is much larger
than the subtracted term.

Figure 11 shows a systematic variation of the maximum degree. We perform the analysis with
d̃max = αdmax and α ∈ [0, 1], where dmax is the maximum degree of the full multiplex visibility graph
(MVG) from the data for k = 1, ..., 4 and dmax = 75 for k = 5. We vary α = 0, 0.1, ..., 0.9, 1 and
calculate the irreversibility of each tuple using the DiMViGI framework but with restricted degree dis-
tribution. In addition, we also show, for each value of α, the Pearson correlation coefficient, r , and
Spearman’s rank, ρ, between the limited and full support values at each level. Panels a-e) show the
effect on the irreversibilities of k-tuples with k = 1, ..., 5 respectively and panel f) recalls the schematic
representation of the regions of interest. For each level, the irreversibility monotonically increases as
we increase α, confirming that degree-limiting underestimates the irreversibility. For lower orders (1-2),
we see that the increase is linear. In particular, for the pairwise results, to get a strong correlation with
the full support irreverisibility, one needs to use a large proportion of the dmax. On the other hand, for
the higher orders (3-5), the increase is sigmoidal. Panels c-e) indicate that even limiting to half of the
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maximum degree is sufficient for an almost perfect correlation with the original results. For order 4-5,
we see that this also captures approximately 90% of the irreversibility. With an exponentially smaller
distribution, one can capture almost equivalent information. This analysis indicates that degree limiting
is a very practical and useful tool to maximise the memory efficiency of the DiMViGI framework at
higher orders.

8 Formulations of the entropy production rate for Markovian and
non-Markovian systems

As discussed in the main manuscript, the entropy production rate of a system that is out of equilibrium
is equal to the information-theoretic evidence for the AoT quantified by,

σ =
∑
Γ

P (Γ) log
P (Γ)

P (Γ′)
, (46)

where Γ is a trajectory, Γ′ is its time-reversal and P (Γ) is the ‘path-probability’, the probability of
observing that specific trajectory [34, 18]. Calculating this divergence quantifies the distance from
equilibrium [8, 25, 33].

The formulation of the path probability is different in discrete and continuous systems as well as
for Markovian and non-Markovian dynamics.

In the case of discrete time, discrete space, Markovian dynamics, the entropy production rate sim-
plifies to,

σ =
∑
i ,j

Pi j log
Pi j
Pj i
, (47)

where Pi j is the join transition probability, P (xt+1 = j, xt = i) [32, 31].

For l−order Markovian dynamics, the rate of entropy production is given by,

σ =
1

l

∑
x1,...xl+1

Px1,...,xl+1 log
Px1,...,xl+1
Pxl+1,...,x1

, (48)

where Px1,...,xl+1 is the probability of observing the exact sequence of states x1, ..., xl+1.

For a general system with discrete states in discrete time, the rate of entropy production of a sin-
gle trajectory is given by,

σ = lim
t→∞

1

t

∑
x1,...xt+1

Px1,...,xt+1 log
Px1,...,xt+1
Pxt+1,...,x1

, (49)

where Px1,...,xt+1 is the probability of observing the exact sequence of states x1, ..., xt+1.

For continuous time Markovian dynamics, the time-dependent rate of entropy production is given
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Figure 11: Systematic analysis of the effect of degree-limiting on the irreversibility of each tuple.
Panels a-e) show the proportion of irreversibility captured with degree limited to d̃max = αdmax for
α ∈ [0, 1]. Using a limited degree underestimates the irreversibility of the tuple. In addition a-e) show
the correlation between the limited degree results at each level, and the full degree results. For higher
orders, degree limiting is shown to lose minimal information, both in terms of the correlations between
tuples and absolute values. This indicates that is is a valuable technique for maximising the efficiency
of the DiMViGI framework. Panel f) recalls the schematic representation for the tuples in the legends.
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by,

σ(t) =
1

2

∑
i ,j

[pi(t)wi j − pj(t)wj i ] log
pi(t)wi j
pj(t)wj i

, (50)

where pi(t) is the instantaneous probability distribution and wi j are the transition rates [6].

For Markovian dynamics in continuous space and time, given by the Langevin equation,

ẋ = A(x, t) + B(x, t) · η(t), (51)

we can write an equivalent Fokker-Planck equation,

∂tp(x, t) = −∇j(x, t) (52)

ji(x, t) = Ai(x, t)p(x, t)−
∑
j

∇j(Di j(x, t)p(x, t)), (53)

where,

D(x, t) =
1

2
B(x, t)B(x, t)>. (54)

Following [6], the time-dependent entropy production rate is given by,

σ(t) =

∫
x F (x, t)j(x, t), (55)

where,

F (x, t) =
j>(x, t)D(x, t)−1

p(x, t)
. (56)

9 Experimental paradigm and MEG recordings

In this section, we provide additional information about the experimental paradigm, acquisition and
pre-processing of the MEG recordings.

9.1 Experimental paradigm

We employed an old/new paradigm auditory recognition task [4, 3, 2, 9, 11, 10]. Participants listened
the first four bars of the right-hand part of Johann Sebastian Bachs Prelude No. 2 in C Minor, BWV
847, twice and were asked to memorise it to the best of their ability. Next, participants listened to 135
five-tone musical sequences, corresponding to 27 trials in 5 experimental conditions, of 1750 ms each
and were requested to indicate if the sequence belonged to the original music or was a variation. The
experimental conditions corresponded to systematic variations on the position of the first varied tone
in the sequence. For a detailed description and analysis of the different experimental conditions, see
Bonetti et al [4]. We consider one experimental condition, where participants recognised the original,
previously memorised sequences.
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9.2 Data acquisition

The MEG recordings were taken in a magnetically shielded room at Aarhus Univeristy Hospital (AUH),
Aarhus, Denmark on an Elekta Neuromag TRIUX MEG scanner with 306 channels (Elekta Neuromag,
Helsinki, Finland). The sampling rate was 1000 Hz with analogue filtering of 0.1-330 Hz. Before
taking the recordings, we registered the head shape of participants and the position of four Head Position
Indicator (HPI) coils with respect to three anatomical landmarks using a 3D digitiser (Polhemus Fastrak,
Colchester, VT, USA). We used this recording to co-register MRI scans with the MEG recordings.
During the MEG recordings, the HPI coils continuously registered the localisation of the participant’s
head which was then used for movement correction. Furthermore, heartbeats and eye-blinks were
recorded with two sets of bipolar electrodes which were then used, further along the pre-processing
pipeline, to remove artefacts from the MEG recordings. The MRI scans were taken on a CE-approved
3T Siemens MRI-scanner at AUH. The MRI data consisted of structural T1 (mprage with fat saturation)
with a spatial resolution of 1.0 x 1.0 x 1.0 mm and the following sequence parameters: echo time (TE)
= 2.61 ms, repetition time (TR) = 2300 ms, reconstructed matrix size = 256 x 256, echo spacing =
7.6 ms, bandwidth = 290 Hz/Px. The MRI and MEG recordings were acquired on two separate days.

9.3 MEG data pre-processing

Firstly, the raw MEG sensor data (204 planar gradiometers and 102 magnetometers) was pre-processed
using MaxFilter to attenuate external interferences [35]. Next, signal space separation was applied
with MaxFilter parameters: spatiotemporal signal space separation [SSS], down-sample from 1000Hz
to 250Hz, movement compensation using cHPI coils [default step size: 10 ms], correlation limit
between inner and outer subspaces used to reject overlapping intersecting inner/outer signals dur-
ing spatiotemporal SSS: 0.98). Then the data was converted into Statistical Parametric Mapping
(SPM) formatting and further pre-processed in MATLAB (MathWorks, Natick, MA, USA) using
in-house-built codes (LBPD, available at https://github.com/leonardob92/LBPD-1.0.git) and
the Oxford Centre for Human Brain Activity (OHBA) Software Library (OSL) (available at https:
//ohba-analysis.github.io/osl-docs/) [38]. OSL is freely available software that builds on the
Fieldtrip [29], FSL [39], and SPM [12] toolboxes. Next the continuous MEG data was visually inspected
and large artefacts were removed. This removal discarded less than 0.1% of the data. Independent
component analyses (ICA) were used to removed artefacts stemming from heart-beats and eye-blinks
[27]. Firstly, the original signal was decomposed into independent components. Next, we isolated and
discarded the components that picked up activity from eye-blinks and heartbeats. Then the signal was
rebuilt using the remaining components. Lastly, the signal was epoched into 135 trials, 27 trials in 5
experimental conditions, and the mean baseline signal, obtained from the post-stimulus brain signal,
was removed. Each resulting trial lasted 4500 ms, made up of 4400 ms plus 100 ms of baseline time.

9.4 Source reconstruction

Whilst MEG recordings have excellent temporal resolution when compared to other imaging modali-
ties, one must employ source-reconstruction to spatially locate activity in the brain. We employed the
beam-forming algorithm [15, 16, 5] implemented in both in-house codes and OSL, SPM and FieldTrip.

In the following, we give a thorough description of the inverse model employed in the beam-forming
algorithm. The algorithm is made up of two steps: (1) designing a forward model, (2) computing the
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inverse solution.

The forward model is a theoretical model that considers each brain source as a voxel/active source.
The model describes how the strength of each dipole would be reflected onto each of the MEG sensors.
We employed magnetometer channels and an 8-mm grid, which returned 3559 dipole locations (voxels)
within the whole brain. We co-registered the individual, structural T1 data with the fiducial points and
then computed a forward model by adopting the ‘Single Shelf’ method [28]. This outputs the so-called
‘leadfield’ model which is an S ×M matrix, L, where S is the number of sources and M is the number
of MEG channels. In three cases, the structural T1 was not available and so we performed the leadfield
computation with the ‘MNI152-T1 with 8-mm spatial resolution’ template.

Next, we used the beam-forming algorithm to compute the inverse solution. By sequentially apply-
ing a set of weights to the source locations, the algorithm can isolate the contribution of each source
to the activity recorded by each MEG channel at each time-point of the recording. We summarise the
beamforming algorithm in the following steps.

Firstly, the data recorded by the MEG sensors B at time t is described by the equation,

Bt = LQt + ν (57)

where L is the leadfield model, Q is the ‘dipole matrix’ which carries the activity of each dipole over
time and ν is noise [16]. The aim is to compute Q by solving the inverse problem. In the beam-forming
algorithm, weights are computed and then applied to Bt i.e. for a single dipole, q, we have,

qt = W
>Bt . (58)

Beam-forming computes weights, Wn, for each brain source n using the covariance matrix of the MEG
sensors, C, calculated on the continuous signal with all trials concatenated, in the following fashion,

Wn = (L
>
n C
−1Ln)

−1L>n C
−1. (59)

Following Nolte [28], the computation of the leadfield method was performed for three orientations of
each brain source. Using singular value decomposition (SVD), the three orientations were reduced to
one,

L = SVD(L̃>C−1L̃)−1, (60)

a common technique for simplifying beam-forming output [17, 23]. Here, L̃ represents the leadfield
model with three orientations. Lastly, the obtained weights were applied to each brain source at each
time-point and normalised according to Luckhoo et al [23]. In addition to individual trials, the weights
were applied to averaged neural activity over all trials. The procedure returned a time-series for each
of the 3559 brain sources for each trial, referred to as the ‘neural activity index’. The sign ambiguity
of the evoked responses time series was adjusted for each brain source using its sign in correspondence
with the N100 response to the first tone of the auditory sequences (see Refs. [4, 2, 11, 9]).

Finally, the 3559 voxels obtained through source reconstruction were reduced to six functional brain
parcels (or regions of interest (ROIs)) that roughly correspond to auditory cortices in the left and
right hemispheres (ACL, ACR); the hippocampal and inferior temporal cortices in the left and right
hemispheres (HITL, HITR) and two medial regions, the bilateral medial cingulate gyrus (MC) and the
bilateral ventro-medial prefrontal cortex (VMPFC). The data was analysed at a temporal resolution of
4 ms so the resulting multivariate time-series was of dimension 6× 1026 (variables × time-points).
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